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Energy optimization for off-lattice protein folding
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Two three-dimensional AB off-lattice protein models consisting of hydrophobic and hydrophilic monomers
are studied in this paper. By incorporating an extra energy contribution into the original energy function, the
protein folding is converted from a constraint optimization problem into an unconstrained one which can be
solved by the well-known gradient method. From the initial configurations randomly generated by the heuristic
strategy proposed in this paper, our algorithm can find better results than those by nPERM for the four
Fibonacci sequences. Based on the initial configurations obtained by energy landscape paving (ELP) routine,
some of our results for the lowest energies are better than the best values reported in the literature.
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I. INTRODUCTION

Prediction of three-dimensional (3D) protein structures is
one of the central problems in computational biology. In de-
spite of the great efforts made by the scientists in past de-
cades, it remains an amazingly difficult computational prob-
lem not only because the folded 3D structure of a protein is
extremely complicated, but also because a general prediction
strategy must not depend on the foreknowledge of any spe-
cific structural information about the proteins whose struc-
tures are to be predicted [1].

Since the problem is too difficult to be approached with
fully realistic potentials, the theoretical science community
has introduced and examined several highly simplified mod-
els, one of which is the HP lattice model of Dill [2,3], where
each amino acid is treated as a point particle on a regular
(quadratic or cubic) lattice, and only two types of amino
acids—hydrophobic (H) and hydrophilic (P)—are consid-
ered. The protein is confined as a self-avoiding path on a
regular square or cubic lattice, with attractive interactions
only between neighboring nonbonded H monomers.

Being the most simplified and most popular model, the
HP model only considers the interactions between neighbor-
ing nonbonded H monomers, neglecting the other nonlocal
effects caused by P-P, H-P, and non-neighbored H-H pairs,
which also exert significant statistical influence on the con-
formation of the monomers in the properly folded state. To
illustrate the influence of nonlocal effects on protein folding,
Stillinger et al. [4,5] proposed and studied a more realistic
simplified model, namely, the AB off-lattice model. With
some substantial modifications, a new version of the AB
model is introduced in Ref. [6].

Even in this highly simplified model, it is not easy to
predict the native state for the protein folding problem. This
problem has been recognized to be NP-complete, which
means that it is not solvable in polynomial time, even for an
optimal algorithm. Consequently, various heuristic schemes
have been proposed for approaching this problem.

For the 2D AB model, neural networks [4], simulated tem-
pering [7], Monte Carlo [8,9], molecular dynamics [10], and
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biologically motivated methods [11,12] were used to find the
native state. An improved pruned enriched Rosenbluth
method with importance sampling [13], namely, nPERM
[14], was proposed by Hsu et al., which found states with
lower energy than previously proposed putative ground
states for the four Fibonacci sequences [5]. Without modify-
ing the energy function, Hsu er al. extended the 2D AB
model to 3D version and presented some putative lowest
energy states for the four sequences. Although the resulting
conformation corresponding to the lowest energy has a single
hydrophobic core for the short sequence with length 13, the
longer sequences with length ranging from 21 to 55 do not
fold into conformations with single hydrophobic cores. Re-
cently, better results in three dimensions for the four se-
quences were achieved by means of the annealing contour
Monte Carlo (ACMC) algorithm [6], energy landscape pav-
ing (ELP) minimizer [15,16], and conformational space an-
nealing (CSA) method [17-20].

However, it is still not clear whether the reported ground-
state conformations for these sequences are indeed the global
minima in the complicated energy landscape that is charac-
terized by a multitude of local minima separated by high-
energy barriers [21,22]. In this paper, we propose a quite
different class of heuristic algorithm for predicting the native
structure for the two AB off-lattice models in three dimen-
sions.

II. MODELS

The AB model also uses two types of monomers, now
called “A” (hydrophobic) and “B” (hydrophilic). The dis-
tances between successive monomers along the chain are as-
sumed to be fixed (r;;,;=1). In the literature, there are two
different AB models in three dimensions.

The first model, denoted by model I, is the original AB
model proposed in Ref. [4]. In this model, nonconsecutive
monomers interact through a modified Lennard-Jones poten-
tial. In addition, there is an energy contribution called bend-
ing energy from each bond angle 6, between successive
bonds. The energy function for a N monomer chain is ex-
pressed as
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where r;; is the distance between monomer i and j. Each o; is
either A or B, and C,(0;,0;) is +1 for an AA pair, +1/2 for a
BB pair and —1/2 for an AB pair, thus producing strong
attraction between AA pairs, weak attraction between BB
pairs, and weak repulsion between AB pairs, roughly analo-
gous to the situation in real proteins.

The other model, denoted by AB model II, was introduced
in Ref. [6]. It is a variant of AB model I in that it not only
involves bond angle energy and Lennard-Jones potential, but
also considers a new energy contribution, the torsional en-
ergy. The energy function is given by

N-2 11\1—3
Un= 2 ;- Uiy — EE u;- ;o
i=1 i=1
N-2 N
+42 2 Cyloy0)(r = 1)), (2)
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where u; is the bond vector between monomers i and i+ 1
with unit length, C,(0;,0;) is +1 for the AA pair, and +1/2
for the BB and AB pair. The first term in Eq. (2) is the part of
the energy contribution of bending energy from successive
bonds. The second term takes the torsional energy into ac-
count.

III. METHODS
A. Problem description

Consider an amino acid sequence as a chain of black balls
(A) and white balls (B), numbered from 1 to N. Denote the
coordinates of the center of the ith (i=1,2,...,N) ball by
(x;,y:,2;). At any moment, the positions of the N balls are
called a configuration, denoted by (X|,¥1,21, .- >Xyn>Yn»2ZN)-

Now, the protein folding problem can be described as fol-
lows:

min(U;), (3)

subject to

i
VO =X )2+ =y + (- zp)? = 1,
i=1.2,.... N-1. ()

Note that U; is U; (for model I) or Uy (for model II).
Equation (4) ensures that the distances between two consecu-
tive balls along the chain are equal to 1. A configuration that
satisfies constraint Eq. (4) is defined as a legal configuration.
Equations (3) and (4) form a specific type of nonlinear
constraint-satisfaction problem [23,24]. In spite of its sim-
plicity, it is rather difficult to solve this kind of problem
directly due to the loss of smoothness in the solution space.
Therefore, we propose a scheme to convert this constraint
optimization problem into an unconstrained one which is
smooth in the solution space.
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B. The new mathematical description

Instead of fixing the links between two successive balls,
we assume that all the N balls are sequentially linked by
springs with natural length to be 1. The spring has the ten-
dency to return to its natural length after being compressed
or stretched. We will show how springs can be used to relax
the requirement on the solvability of the original constraint
optimization problem.

For any configuration, the length of a spring connecting
two consecutive balls along the chain is

)’i+1)2 +(z;— Zi+1)2,
N-1. (5)

lije1 = V0= x)* + (v —
i=1,2, ...

If [;;,1>1, the spring is stretched. If /;;,; <1, the spring is
compressed. According to Hook’s law, the elastic potential
energy of a spring is
1
WM=E&MﬁVJV,i=LlHWN—L (6)
where K| is the spring coefficient, K;>0. Then the total
spring potential energy of given configuration is

N-1 LW
Uy= 2, U1 = EKYE (L1 = D (7)
i=1 i=1

Now, apart from the energy contributions from bond
angles, Lennard-Jones, and torsion angles (for model II
only), the elastic potential energy of springs is also a part of
the total potential energy of the configuration. It can be seen
from Egs. (1) and (2) to Egs. (5)—(7) that the total potential
energy U is a known function of the configuration with 3N
independent variables

U=UXLY120 - XN YN 2N) » (8)

where U(x;,y1,21,..-,Xy,Yn>2y) 18 defined on the entire
3N-dimensional Euclidean space (-, +%)3", smooth, con-
tinuous, and dlfferentlable everywhere The aim is to find a
configuration (x|,y,,2,...,Xy,Yy-Zy) With minimum en-

ergy,

UX),y 120 o Xanyanzy) = min(U). 9)

Obviously, this problem is an unconstrained optimization
problem for which there exists a ready-made algorithm for
its solution, the gradient method, or the steepest descent
method [25].

Equations (6) and (7) show that the elastic energy is non-
negative. According to Eq. (8), if the coefficient K is set to
be large enough, a spring with length differing slightly from
its natural length can considerably increase the whole energy
of the configuration. Therefore, the total elastic energy of the
springs acts as a penalty function of the degree of departure
of a configuration from a legal one, thus ensuring that the
resulting configuration is legal.

C. Strategy of generating promising initial configuration

In the course of solution using the gradient method, the
initial configuration (x;,y,z;,...,Xy,Vy,2y) Will be steadily
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FIG. 1. An initial configuration of 13 balls generated by the
strategy of generating promising initial configuration.

evolving. This process will continue until the calculation
falls into the trap of local minimum. Then a new initial con-
figuration is randomly generated for another round of calcu-
lation. Although it is possible to obtain satisfying results
from such calculations in principle, the efficiency is rather
low as seen from actual calculations. Thus, promising initial
configurations are certainly desirable.

Inspired by the phenomenon that hydrophobic amino ac-
ids are lumped together as a compact core surrounded by
hydrophilic amino acids in a protein molecule, we put for-
ward a good heuristic strategy to generate promising initial
configurations that simulate the real protein structure.

We define two spherical spaces with radii R; and R,, re-
spectively, where R; and R, are positive numbers with R,
=2R,. We set R;=yN in our algorithm. The two spherical
spaces have the same center, which is the origin of the 3D
Cartesian coordinate system. For a black ball in initial con-
figuration, its center position can only be generated randomly
in a 3D space confined in the spherical space with radius R;.
For a white ball in initial configuration, its center position
can only be generated randomly in a 3D space confined in
the ball with radius R, but excluding the space of ball R;. In
a more formal way, it can be stated as follows:

o
] +y; 47 <R, (10)
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[2. 2.2
Ry <\xj+yj+zj <Ry, (11)

where i is the black ball and j is the white ball, and x, y, z are
the coordinates of the center of a randomly generated ball.

To illustrate this strategy, an initial configuration of 13
balls is shown in Fig. 1. For ease of visualization, the illus-
tration is confined to two dimensions.

IV. RESULTS AND DISCUSSIONS
A. Results from the randomly generated initial configurations

Table I shows the lowest energies for all the four Fi-
bonacci sequences for model I obtained by our heuristic al-
gorithm (HA), along with the results by nPERM [14], ELP
[16], and CSA [6]. Our results are better than those of the
nPERM for all cases, with the energy difference increasing
gradually for longer chains. As for sequence with length 13,
our result is also slightly better than that of ELP and is equal
to that of CSA. Though we cannot reach the energy yielded
by ELP and CSA for the other three sequences, our result of
sequences N=21 and 34 are very close to those by ELP and
CSA within less than 0.5 and 1.5%, respectively. For the
longest chain with N=55; however, our result is higher by
about 5%.

It should be pointed out that each of the results is the best
one of the solutions iterated from several (N<150) initial
configurations randomly generated by our above-mentioned
heuristic strategy. It is likely to find conformations with even
lower energy if we try more runs for each sequence, but the
computational time is too long to be practical. The runtime
of each run is about 38, 75, 347, and 865 s for the four
sequences, respectively, on a P4 2.4 GHz PC with 512 MB
memory, while the computation time of nPERM was up to
2 days on Linux and UNIX workstation [14]. The runtime of
ELP and CSA was not reported in the literature.

B. Results from the initial configurations obtained by ELP

The intensive calculations showed that the initial configu-
ration is crucial for the energy of the resulting conformation.
Though the above-mentioned heuristic strategy can generate
better initial configurations than those randomly generated in
the 3D space, the results are not good enough. In this section,
we adopt the lowest-energy conformations obtained by ELP

TABLE I. The four Fibonacci sequences and the lowest energies of model I by our heuristic algorithm
(HA) based on the randomly generated initial configurations, in comparison with those by nPERM, CSA, and

ELP, respectively.

N Sequence nPERM ELP CSA HA®

13 ABBABBABABBAB -4.9616 -4.967 -4.9746 -4.9746

21 BABABBABABBABBABABBAB —11.5238 -12.316 —12.3266 -12.2617

34 ABBABBABABBABBABABBABABBABBA -21.5678 -25.476 -25.5113 —24.2441
BABBAB

55 BABABBABABBABBABABBABABBABBA —32.8843 —42.428 -42.3418 -40.3177

BABBABBABABBABABBABBABABBAB

*The lowest energy by HA among the results of 20 runs for sequences N=13 and 21, and 50 runs for

sequences N=34 and 55.
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TABLE II. The lowest energies of model I and model II by HA based on the initial configurations that are the resulting minimum-energy
conformations by ELP. The results for model I are compared with those by nPERM, ELP, and CSA, respectively. Lowest energies for model

II are compared with those by ACMC, ELP, and CSA, respectively.

Model 1 Model 11
N nPERM ELP CSA HA ACMC ELP CSA HA
13 -4.9616 -4.967 -4.9746 -4.9746 -26.5066 -26.498 -26.4714 -26.5068
21 -11.5238 -12.316 —12.3266 —12.3266 -51.7575 -52.917 —52.7865 -52.9329
34 -21.5678 -25.476 -25.5113 -25.5113 -94.0431 -97.261 -97.7321 -97.4230
55 -32.8843 -42.428 -42.3418 -42.5181 —154.5050 —172.696 —173.9803 —173.3246

as the initial configurations. From these initial configurations
(see  http://www.physik.uni-leipzig.de/~bachmann/papers/
suppl16/suppl16.html), our algorithm can find new lowest
energies for the four Fibonacci sequences and the six se-
quences proposed in Ref. [16].

Table II shows the lowest energies of model I and model
IT in three dimensions for the four Fibonacci sequences ob-
tained by our algorithm, along with the results by nPERM,
ACMC [6], ELP, and CSA. Obviously, our results for model
I are better than those of the nPERM and ELP for all cases,
with the energy difference increasing gradually for longer
chains. Our results are better by 0.15%, 0.09%, 0.14%, and
0.2% than those by ELP for the four sequences, respectively,
and the average improvement is 0.15%. Our results for the
three short chains are identical to the results by CSA but
slightly better for the longest chain with N=55. Results for
model II are also better than those by ACMC and ELP for all
cases. For model II, our results are better by 0.03%, 0.03%,
0.17%, and 0.36% than those by ELP for the four sequences,
respectively, and the average improvement is also 0.15%.
Compared with results by CSA, ours are better for the short
chains with N=13 and 21; however, we cannot reach the
energy by CSA for the two long chains.

Since our algorithm found new candidates for global
minima with lower energies for most cases (only the results
of sequences N=34 and 55 of model II by CSA are better

(@) (b)

FIG. 2. The lowest-energy conformations of AB model I found
with our algorithm for the four Fibonacci sequences: (a) N=13, (b)
N=21, (¢c) N=34, and (d) N=55. The black circles represent hydro-
phobic (A) monomers and the white ones hydrophilic (B)
monomers.

than ours), it indicates that the results obtained by ELP,
ACMC, and CSA may not correspond to ground-state ener-
gies.

Since our calculations are based on deterministic initial
configurations, we run our algorithm only once for each case.
It should be pointed out that since K, is rather large (K|
> 10°), the resulting configurations approximately satisfy the
constraint Eq. (4). In other words, the distance between any
two successive monomers meet the following requirement:

lrim—1<é8 i=12,....N—-1, (12)

where & is named solution quality. & is 107> for our results,
whereas & is 2 X 107 for the results by ELP.

Figure 2 displays the lowest-energy conformations of
model I obtained by our algorithm, where black circles de-
note hydrophobic monomers (A) and white circles denote
hydrophilic monomers (B). It is clear that each conformation
has a single hydrophobic core, as observed in real proteins.
Figure 3 shows the lowest-energy conformations of model II.
Similarly, all sequences fold into conformations with single
hydrophobic cores. From Fig. 2 and Fig. 3, it can be seen
that the conformations of model II are more compact than

| % (b)

FIG. 3. The lowest-energy conformations of AB model II found
with our algorithm for the four Fibonacci sequences: (a) N=13, (b)
N=21, (¢c) N=34, and (d) N=55. The black circles represent hydro-
phobic (A) monomers and the white ones hydrophilic (B)
mOonomers.
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TABLE III. The lowest energies of both models obtained by HA for the six sequences introduced in Ref. [16], in comparison with those
by ELP. Similarly, the initial configurations for HA are the lowest-energy conformations obtained by ELP.

Model 1 Model 11

No. Sequence ELP HA ELP HA

20.1 BAAAAAABAAAABAABAABB -33.810 —33.8429 -58.317 -58.3226
20.2 BAABAAAABABAABAAAAAB -33.926 —33.9445 -58.914 -58.9174
20.3 AAAABBAAAABAABAAABBA -33.578 —33.6093 -59.338 -59.3462
20.4 AAAABAABABAABBAAABAA —34.498 -34.5261 -59.079 -59.0887
20.5 BAABBAAABBBABABAABAB -19.653 -19.6614 -51.566 -51.5682
20.6 AAABBABBABABBABABABA -19.326 —19.3469 -53.417 -53.4217

those of model I for the same sequences. As pointed out in
Ref. [17], it is mainly due to the attractive long-range inter-
actions among AB monomers.

We also test our algorithm for the six sequences used in
the study of thermodynamic properties of heteropolymers in-
troduced in Ref. [16]. Similarly, the initial configurations are
also the lowest-energy conformations obtained by ELP. For
each sequence, the heuristic algorithm runs for one time, and
the CPU time of each run is within 80 s. The sequences and
the corresponding ground energies by ELP are listed in Table
III, together with the renewed ground energies obtained by
our heuristic algorithm.

For each sequence, our result is better than that of ELP for
both models. For model I, the average improvement for the
six sequences is about 0.076%. (Our result is lower by 0.11%
than that of ELP for sequence 20.6, while the result for se-
quence 20.5 is just better by 0.031%.) For model II, the
average improvement for the six sequences is only about
0.0098%. This implies that the results of the six sequences
obtained by ELP may only correspond to metastable local
minima.

V. SUMMARY

The objective of the protein folding problem is to find
inherent structures for a given set of attracting particles
(amino acid monomers) that initially are widely dispersed.
The elastic potential energy of spring is introduced into the
energy function of the configuration to convert the protein
folding problem to an unconstrained optimization problem,
solvable by the steepest descent method. Random initial con-

figurations of the N particles are mapped onto the final in-
herent structures by a numerical steepest descent on the po-
tential energy surface. It should be pointed out that the
evolution of (x;,y1,2;, .- ,Xy,Yn-2x) in the gradient method
is a series of movements of the positions of the N particles to
a legal configuration with low potential energy.

Since the gradient method is only a local search algo-
rithm, it is possible to fall into the trap of local minimum.
Selecting the best one from many solutions iterated from
initial configurations generated by our heuristic strategy may
help to find a comparatively good solution, but the compu-
tational time is rather long. From much better initial configu-
rations, i.e., lowest-energy conformations obtained by ELP,
our method can find conformations of lower energy than the
previous results in the literature for most cases.

From our work, it can be seen that the combination of
several methods of energy optimization is helpful for protein
folding. In our future work, we hope to find some efficient
strategy of jumping out of local minimum to develop a more
efficient algorithm.
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